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a b s t r a c t

Self-similar solutions of the problem of the diffusion mixing of vapour–gas–condensate mixtures, which
is a generalization of the Stefan problem, are constructed. It is established on the basis of the solution
of the problem concerning the mixing a vapour with a gas that, depending on the initial temperatures,
mixing can occur with the formation of an intermediate vapour–gas–condensate layer. A chart of the
possible structures of the mixing zones of a vapour–gas–condensate system with a vapour-gas mixture is
obtained.

© 2008 Elsevier Ltd. All rights reserved.

The mixing of air flows of different vapour contents and temperatures is frequently accompanied by phase transitions with the formation
or disappearance of condensate in the form of fine droplets. These phenomena are fundamental in the formation and dispersion of fogs and
clouds.1 The visual configurations of surges into the atmosphere from exhaust pipes and discharge ejections are determined by condensation
processes. Furthermore, the phenomenon of condensation accompanying the mixing of gaseous systems is of considerable importance in
the preparation of nanomaterials.

The purely diffusion problem of the mixing of vapour–gas–condensate mixtures is considered below in a one-dimensional self-similar
formulation for different values of the temperature at the initial instant.

1. Basic equations

In describing the mixing processes of vapour-gas condensed systems, we will make the following assumptions. We shall assume that
a mixture consists of three components: a gas, which does not participate in phase transitions, and a vapour and a condensate, between
which phase transitions can occur under equilibrium conditions. Suppose �g, �v and �l are the partial (mean) densities of the gas, the
vapour and the condensate. The volume concentration of the condensate in the form of drops (�l = �l/�0

l
, where �0

l
is the true density

of the condensate) is low (�l � 1) and it therefore does not have an effect on the mixing of the gas and the vapour which occurs under
diffusion conditions according to the equation

(1.1)

where D the diffusion coefficient. We also assume that the drops are stationary vl = 0.
We will write the heat conduction equation taking into account phase transitions as

(1.2)

where T is the temperature, �c is the heat capacity per unit volume of the mixture (cg, cv, cl are the specific heat capacities of the compo-
nents), � is the thermal conductivity and l is the specific heat of the phase transitions. The second term on the right-hand side of Eq. (1.2)
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expresses a volume source (∂�l/∂t > 0) or sink (∂�l/∂t > 0) of heat on account of the latent heat of the phase transitions and, in zones where
there is no condensate, it is equal to zero �l = 0.

We shall also assume that the total pressure P, which consists of the partial pressures of the gas Pg and the vapour Pv, is constant and,
at the same time, the Mendeleyev-Clapeyron equation and Dalton’s law are satisfied in the case of the gas and the vapour. We then have

(1.3)

where R is the universal gas constant, and �g and �v are the molar masses of the gas and the vapour.
In the mixing zones, where there is condensate (�l > 0), phase transitions occur under equilibrium conditions in accordance with the

statements noted above (the vapour-gas mixture is at the dew point throughout the whole extent of this zone) and the partial pressure of
the vapour Pv is therefore equal to the pressure of the saturated vapour Ps(T) corresponding to the current temperature T(Pv = Ps(T)). The
expression2

(1.4)

is conventionally used where P* and T* are empirical parameters which are determined on the basis of tabulated data. It then follows from
relations (1.3) that, in zones where (�l > 0), the partial gas and vapour densities are uniquely defined in terms of the current temperature T
in the form

(1.5)

These expressions have a meaning when the condition Ps(T) ≤ P is satisfied (otherwise (Ps(T) > P) and the value of the gas density �g

becomes negative). The value of the temperature T = Tb, at which the exact equality Ps(Tb) = P is satisfied, corresponds to the boiling point
at a pressure P.

Hence, the possible values of the partial vapour density at temperatures T < Tb satisfy the condition

(1.6)

and, in the case of temperature above the boiling point (T > Tb), the condition

(1.7)

The hatched region in the T, �v plane in Fig. 1 corresponds to the possible states of the vapour-gas condensed system at a pressure P,
and the upper boundary of this region when T ≤ Tb corresponds to the state of the system when there is condensate present (�l > 0). The
segment of the upper boundary when T > Tb corresponds to a state of pure superheated vapour under a pressure P.

2. Mixing of vapour with gas

Suppose that, in the initial state, pure vapour with a density �vo at a temperature To is in the semi-infinite zone on the left of an imaginary
partition (−∞ < x ≤ 0) and that pure gas at a temperature Te is on the right (0 < x < ∞). Parameters, referring to the initial state in the left
and right zones, will henceforth be labelled with additional o and e subscripts. At the instant t = 0, the partition is removed and diffusion
mixing occurs when t > 0. We write the initial state, which has been mentioned, in the form of the following initial conditions

(2.1)

The points of the upper boundary of the hatched area when T > Tb in Fig. 1 correspond to the first of these, and the points on the abscissa
when T ≤ Tb correspond to the second. In constructing the solutions of the equations presented in the preceding section, we shall assume
that, in the general case, there is a certain intermediate zone between the boundaries x = x(l) and x = x(r) where condensate is present. We
will consequently assume that �l > 0 in the domain x(l) < x < x(r). At the same time, the laws of motion of the left-hand boundary x(l)(t) and
right-hand boundary x(r)(t) are unknown functions of time.

Note that the scheme adopted and the corresponding theoretical mixing model exclude phenomena such as the convective motion of the
whole mixture and, also, wave processes associated, for example, with “thermal shock” from the treatment. This simplified approach can

Fig. 1.
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be used to analyse the possibility of the formation or dispersal of condensate accompanying the diffusion mixing of vapour-gas mixtures
and, also, to estimate the characteristic dimensions of the mixing zones.

It follows from the conditions of continuity of the partial density of the gas and the diffusion flows of the gas on the two unknown
boundaries (x = x(l) and x = x(r)) that

(2.2)

The − and + superscripts correspond to the values of quantities on the left and on the right of the boundaries.
We will assume that the partial density of the drops on the left-hand boundary (x = x(l)) is equal to zero (�(l)

l
) = 0). The conditions for

the continuity of the temperature and the heat fluxes on this boundary are then written in the form

(2.3)

According to relations (1.5), in the region where there is condensate (�l > 0), the partial vapour density is uniquely defined by the value
of the current temperature. The gradients of the partial gas density and the temperature must then be related by the condition

(2.4)

and, according to the second equality of (1.5),

(2.5)

We will assume that the temperature is continuous on the right-hand boundary (x = x(r)) and that the partial density of the drops can
undergo a discontinuity. Suppose the partial density of the condensate on the left of the boundary is equal to �(r)

l
(on the right, it is equal

to zero). The temperature and heat balance continuity conditions on the boundary x = x(r) can then be written in the form

(2.6)

Like to condition (2.4), we also have

(2.7)

on the right-hand boundary.
This problem is a generalization of the Stefan problem3 since the phase transitions here can not only occur in the frontal boundaries

but also in spatial zones.
We shall seek a self-similar solution by introducing the self-similar dimensionless variable

(2.8)

From Eq. (1.1), we then obtain

(2.9)

The heat flux equation (1.2) is written in the form

(2.10)

The initial conditions (2.1) are transformed into the following boundary conditions for Eqs. (2.9) and (2.10)

(2.11)

We shall assume that the unknown self-similar coordinates of the intermediate boundaries

(2.12)
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are constant. The boundary conditions (2.2) are then written in the form

(2.13)

For simplicity, we will assume that Le ≈ 1 (this condition always holds for gaseous mixtures). From the heat balance equations (2.3) and
(2.6), we then obtain

(2.14)

The solution of Eq. (2.9), which satisfies conditions (2.11) and (2.13) in the whole of the mixing zone, has the form

(2.15)

Using this solution, on the basis of the second relation of (1.5) and taking account of equality (1.4), we obtain the solution for the
temperature distribution in the intermediate zone, where there is condensate, in the implicit form

(2.16)

Substituting this relation into the heat flux equation (2.10), we obtain a first-order differential equation for determining the partial
condensate density. If the contribution �lcl of the heat capacity due to the condensate is neglected in the total heat capacity of the mixture
�c, we can write the solution of this equation for the partial density distribution of the condensate in the form

(2.17)

and, by relations (2.15) and (2.16)

The partial vapour density in this zone can be determined from the first expression of (1.5) using the known temperature distribution.
The temperature distributions in the zones � < �(l) and � > �(r), where there is no condensate, have the form

(2.18)

Using these temperature distributions, the vapour density in zones where there is only a vapour-gas mixture (�l = 0) can be determined
from expression (1.3):

(2.19)

Note that the values of the self-similar coordinates of the intermediate boundaries �(l) and �(r) as well as the values of the temperatures
on their boundaries, which are present in the solutions (2.17), still remain unknown.

From condition (2.4), taking account of equality (2.5) and, also, using the solutions (2.15) and (2.17), we obtain the following transcen-
dental equation for determining the value of the temperature on the left boundary

(2.20)

where the dew point is reached. It is noteworthy that the value of the temperature T(l) depends solely on the initial temperature of the
vapour To and the pressure P. Using the value of T(l) found from the solution of Eq. (2.20) and substituting solution (2.15) into the left-hand
side of expression (1.5) we obtain an equation for determining the self-similar coordinate �(l) of the left boundary in the form

(2.21)
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Fig. 2.

If the vapour is at saturation point in the initial state, its initial temperature satisfies the condition

(2.22)

Then, as follows from the equality (2.20), the temperature T(l) will be equal to the initial temperature of the vapour To. In this case, we
obtain from Eq. (2.15) that the left boundary has receded to infinity (�(l) → −∞).

When account is taken of solutions (2.15) and (2.16), the boundary condition (2.14) can be reduced to the form

(2.23)

where

From the solution (2.17) when � = �(r), we have

(2.24)

Equations (2.23) and (2.24) enable us to determine two unknown quantities: the self-similar coordinate of the right boundary �(r) and
the partial condensate density �(r)

l
on this boundary.

As an example, we will consider the mixing of dry water vapour (To > Tb) and dry air (�ve = 0). The phase trajectories for the two modes
of mixing are shown in Fig. 1. In the case of the mode which is determined by the initial temperatures To(1) and Te(1), the mixing process
occurs with the formation of an intermediate vapour–gas–condensate zone. The segment of the phase trajectory corresponding to this
zone is located on the saturation line. When the initial temperatures To(2) and Te(2) are sufficiently high, the phase trajectory does not fall
on this line. In this case, an intermediate zone with condensate is not formed.

The results of calculations, which illustrate the structure of the mixing zone for the two modes, are shown in Fig. 2 (by the solid and
dotted curves respectively). The partial vapour and air densities for these two modes differ insignificantly (Fig. 2, a). In the mode with
condensation, only a relatively small amount of condensate is formed (�l � �v, �g , see Fig. 2, b) and the maximum value of the density
of the drops in the mixture reaches �l ≈ 0.02 kg/m3. This corresponds to the initial hypothesis that the volume fraction of the drops in
the mixture is negligibly small (in the case in question �l = �l/�0

l
≈ 2 × 10−5). When there is condensation, the temperature distribution

curve (Fig. 2, c) on the right boundary of the intermediate layer has a small kink because of the consumption of heat in evaporation on the
boundary �(r) in accordance with boundary condition (2.23).
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Fig. 3.

The mixing of a vapour and a gas with the formation of condensate is accompanied by two competing processes. On the one hand,
mixing of the vapour with the gas leads to cooling, to the subsequent attainment of the dew point and the formation of liquid drops in the
mixture. This mechanism, in particular, determines the coordinates and the law of motion of the left boundary of the intermediate zone
x(l) = x(l)(t). However, since the intermediate zone containing the condensate borders to the right on gas which is dry (�ve = 0) at infinity,
its right boundary, where evaporation occurs, has a finite coordinate x(r) = x(r)(t). The rate of advance of this boundary is determined by the
intensity of evaporation which, in its turn, depends on the diffusion transport of the vapour.

The limiting values of the initial temperatures To and Te, at which the formation of condensate is observed, is determined from the
condition that the self-similar coordinates of the boundaries are identical �(l) = �(r). The corresponding curve (Fig. 3) divides the (To, Te)
coordinate plane into two domains. When the values of the initial temperatures To and Te increase, there is a transition from one domain
into the other across this curve which implies that there is a qualitative change in the mode of mixing, and condensate is not formed in the
mixing zone.

3. Mixing of vapour–gas–condensate systems with a vapour-gas mixture

We will now consider a situation when, in the initial state in the left semi-infinite zone (−∞ < x ≤ 0), there is a homogeneous
vapour–gas–condensate mixture at a temperature To with a partial density of the condensate �lo and, in the right zone (0 < x < ∞), there is
vapour-gas mixture with a partial density of the gas �ge at a temperature Te. The points of the upper boundary of the hatched area in Fig. 1
when T < Tb correspond to the initial condition for the left zone. Then, according to expressions (1.4) and (1.5) for the partial vapour and
gas densities �vo and �go, we have

(3.1)

Generally speaking, all the points of the hatched area correspond to the initial state of the mixture in the right zone. In the case of the
partial vapour density �ve for states of a vapour-gas mixture, when the point representing this state lies inside the hatched area in Fig. 1,
we have

(3.2)

In the case when the vapour-gas mixture is located in the right zone, although �le = 0 corresponds to the dew point, the expression for
the partial vapour density �ve will be analogous to expression (3.1) for �vo and, in fact,

(3.3)

In this case, the initial conditions for Eqs. (1.1) and (1.2) can be written in the form

(3.4)

When t > 0, there is no partition, and mixing occurs with the formation of a frontal boundary with the coordinate x = x(f) (� = �(f)) on which
the partial density of the condensate undergoes a jump from a value of �l = �(f )

l
when x = x(f)− (� = �(f)−) to �l = 0 when x = x(f)+ (� = �(f)+). On

this boundary, we can write conditions which are analogous to (2.2), (2.3) and (2.6) and, also, (2.13) and (2.14). The solution of Eq. (2.9),
which satisfies conditions (3.4), is then written in the whole mixing zone in the form

(3.5)
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Fig. 4.

The solution for the temperature distribution in the zone x < x(f) (� < �(f)) has a form similar to (2.16) when corresponding account is taken
of expression (3.5). In the left zone x < x(f) (� < �(f)), on the basis of the heat flux equation (2.10) and taking account of the initial condition
for �l (�l = �lo), we obtain

(3.6)

For the temperature distribution when x > x(f) (� > �(f)), we have

(3.7)

Two unknown parameters �(f) and T(f) appear in this solution. When account is taken of solutions (3.5) and (3.6), it is possible to obtain an
equation which is analogous to (2.23):

(3.8)

where

On the other hand, from solution (3.6) when � = �(f), we have

(3.9)

Equations (3.8) and (3.9) enable us to determine the unknown self-similar coordinate of the frontal boundary of the phase transition
�(f) and the value of the partial condensate density �(f )

l
as viewed from the vapour–gas–condensate zone.

As an example, we will consider the mixing of moist water vapour which is a mixture of air, water vapour and droplets. In the calculations,
the values of the parameters defining the initial state were chosen to be the conventional parameters1 for a natural mist: an atmospheric
pressure P = 105 Pa, a partial density of the droplets in the mixture �l = 10 g/m3, and a vapour temperature To = 300 K. The values of the two
parameters Te and �ve determine the character of the mixing. The initial value of the air temperature Te was varied from 273 K to 400 K and
the partial vapour density in the air �ve was varied from 0 up to a value corresponding to the dew point.

The trajectories for different versions of the mixing of a gas–vapour–condensate mixture with a vapour-gas mixture are shown in the
phase diagram presented in Fig. 4. The initial state of the vapour–gas–condensate mixture is the same in all the versions and is determined
by the initial temperature To and the initial partial densities �vo, �go and �lo. Here, the values of �vo and �go are related to the temperature
To by formulae (3.1). The initial point (O) of the trajectory, which lies on the saturation curve, corresponds to this state. The existence of
droplets of the liquid in the mixture, which is in an equilibrium state with the vapour, is only possible at a temperature which is lower
than the boiling point Tb. Therefore, the points in the diagram corresponding to the initial state of the vapour–gas–condensate mixture are
always located to the left of the boiling point (T < Tb). The initial temperature Te of the vapour-gas mixture in the right domain (x > 0) can be
located in three different intervals which are determined by the values of To and Tb. The partial vapour density �ve at a fixed temperature
Te can take values between zero and the equilibrium value (3.3) corresponding to the temperature Te. The terminal point of the phase
trajectory corresponds to the initial state of the vapour-gas mixture where there is no condensate.
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Fig. 5.

Mixing of a vapour–gas–condensate mixture with a gas which contains vapour and the subsequent changes in the temperature and
partial vapour density can cause condensation in the domain −∞ < x < x(f). Moreover, evaporation of the droplets occurs on the frontal
boundary (x = x(f)). The intensity of evaporation is determined by two quantities: the difference in the initial temperatures �T = Te − To, as
the intensity of the supply of heat to the frontal boundary (x = x(f)) depends on this, and the difference in the initial values of the partial
pressure of the vapour ��v = �ve − �vo, as the intensity of the removal of the vapour formed during evaporation from the boundary of the
domains depends on the magnitude of this. Depending on the values of these parameters, evaporation or condensation can predominate
in the zone to the left of the frontal boundary (−∞ < x ≤ x(f)).

In accordance to what has been noted above, three characteristic versions of the mixing of a vapour–gas–condensate mixture with a
vapour-gas mixture are considered in which the temperature values Te = Te(1), Te(2), Te(3) are found in the three above-mentioned intervals
(Fig. 4).

In the first version (Te(1) ≤ To), mixing of a vapour–gas–condensate mixture with a colder vapour-gas mixture occurs (Fig. 5, a, the
mixing of fog with cold gas: 1 − �ve = 0, 2 − �ve = 2.9 g/m3, 3 − �ve = 5.5 g/m3). In spite of the negative temperature drop (�T = Te − To < 0),
evaporation occurs on the frontal boundary (x = x(f)). This is due to the fact that the initial value of the partial vapour density �ve in the
domain of the vapour-gas mixture is always less than in the domain of the vapour–gas–condensate mixture (��v = �ve − �vo < 0), and
intense removal of the vapour which is formed from the frontal boundary towards the cold but “dryer” vapour-gas mixture occurs. A case
of particular interest is when the initial values of the temperatures To and Te are close or equal. Evaporation then leads to noticeable cooling
in the mixing zone and to the formation of a temperature “well” �T(f) = To − T(f) (Fig. 5, b, the mixing of fog with a warm gas: 1 − �ve =
0, 2 − �ve = 7.6 g/m3, 3 − �ve = 13.9 g/m3, 4 − �ve = 21.8 g/m3). The depth �T(f) of this “well” depends on the intensity of evaporation
and, consequently, it is determined by the difference in the initial values of the partial vapour density ��v = �ve − �vo (when �ve = 0, the
cooling of the mixture on the frontal boundary is a maximum).

In the second version (To < Te(2) < Tb), a vapour–gas–condensate mixture is mixed with a warmer vapour-gas mixture with a temperature
below the boiling point of the liquid Tb (Fig. 6, the mixing of fog with a hot gas: 1 − �ve = 0, 2 − �ve = 74.2 g/m3, 3 − �ve = 123.7 g/m3, 4 −
�ve = 197.8 g/m3). An increase in the partial vapour density in the vapour-gas mixture �ve leads to a reduction in the rate of evaporation on
the frontal boundary, although it takes place because of the temperature drop (Te(2) > T(f)) even when the value in the vapour–gas–condensate
mixture (�ve > �vo) above it is exceeded. However, in this case according to Fick’s law, the vapour entering from the right zone, as well as that
which has been formed due to evaporation on the frontal boundary (x = x(f)), diffuses into the zone of the vapour–gas–condensate mixture,
that is, in a direction which is the reverse of the usual direction. Therefore, in the zone of the vapour–gas–condensate mixture (x ≤ x(f)),
partial condensation of the vapour entering from the hotter but moister vapour-gas mixture (x > x(f)) occurs, that is, intense absorption of
the vapour by the vapour–gas–condensate mixture is observed.

As �ve increases the intensity of the condensation becomes greater and it can even completely compensate for the evaporation. At the

same time, the value of the partial condensate density �(f )
l

on the boundary x = x(f) may exceed the initial value of �lo several fold.
The third version (Te(3) ≥ Tb) corresponds to mixing of the vapour–gas–condensate mixture with a vapour-gas mixture with a temperature

above the boiling point of the liquid in the droplets. As in the preceding version, the rate of evaporation becomes greater as the initial
temperature of the vapour-gas mixture Te increases but decreases when the initial partial vapour density �ve is increased. However, here,
the difference in the initial temperatures of the mixtures �T = Te − To is so large that evaporation on the frontal boundary is possible even
if the vapour–gas–condensate mixture is mixed with the pure superheated vapour (�ge = 0).
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Fig. 6.

Hence, a chart of the different modes of mixing has been constructed from the solutions of one-dimensional problems of the mixing of
vapour–gas–condensate mixtures which have been obtained. Initial values of the temperatures have been found for which the mixing of
a vapour-gas mixture with a pure gas is accompanied by the formation of an intermediate layer with condensate.

The following regularities have been established by an analysis of the solutions describing the mixing of a vapour–gas–condensate
mixture with a vapour-gas mixture.:

1) when the values of the initial temperatures of the vapour–gas–condensate mixture To and the vapour-gas mixture Te are close, cooling
of the mixture to below the initial temperatures occurs in the mixing zone (a temperature “well” with a depth of several degrees is
formed);

2) when the temperature Te is higher than the value of the temperature To and the partial vapour density in the vapour-gas mixture is
higher than in the vapour–gas–condensate mixture (�ve > �vo), a significant growth in the condensate is observed, due to the vapour
which is introduced into the domain of the vapour–gas–condensate mixture from the vapour-gas mixture;

3) when the temperature Te is higher the the boiling point Tb, evaporation on the frontal boundary occurs for all values of the partial
density �ve (even during mixing with pure vapour).
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